Compressive nanomechanics of opposing aggrecan macromolecules.

نویسندگان

  • Delphine Dean
  • Lin Han
  • Alan J Grodzinsky
  • Christine Ortiz
چکیده

In this study, we have measured the nanoscale compressive interactions between opposing aggrecan macromolecules in near-physiological conditions, in order to elucidate the molecular origins of tissue-level cartilage biomechanical behavior. Aggrecan molecules from fetal bovine epiphyseal cartilage were chemically end-grafted to planar substrates, standard nanosized atomic force microscopy (AFM) probe tips (R(tip) approximately 50 nm), and larger colloidal probe tips (R(tip) approximately 2.5 microm). To assess normal nanomechanical interaction forces between opposing aggrecan layers, substrates with microcontact printed aggrecan were imaged using contact mode AFM, and aggrecan layer height (and hence deformation) was measured as a function of solution ionic strength (IS) and applied normal load. Then, using high-resolution force spectroscopy, nanoscale compressive forces between opposing aggrecan on the tip and substrate were measured versus tip-substrate separation distance in 0.001-1M NaCl. Nanosized tips enabled measurement of the molecular stiffness of 2-4 aggrecan while colloidal tips probed the nanomechanical properties of larger assemblies (approximately 10(4) molecules). The compressive stiffness of aggrecan was much higher when using a densely packed colloidal tip than the stiffness measured for using the nanosized tip with a few aggrecan, demonstrating the importance of lateral interactions to the normal nanomechanical properties. The measured stress at 0.1M NaCl (near-physiological ionic strength) increased sharply at aggrecan densities under the tip of approximately 40 mg/ml (physiological densities are approximately 20-80 mg/ml), corresponding to an average inter-GAG spacing of 4-5 Debye lengths (4-5 nm); this characteristic spacing is consistent with the onset of significant electrostatic interactions between GAG chains of opposing aggrecan molecules. Comparison of nanomechanical data to the predictions of Poisson-Boltzmann-based models further elucidated the regimes over which electrostatic and nonelectrostatic interactions affect aggrecan stiffness in compression. The most important aspects of this study include: the incorporation of experiments at two different length scales, the use of microcontact printing to enable quantification of aggrecan deformation and the corresponding nanoscale compressive stress vs. strain curve, the use of tips of differing functionality to provide insights into the molecular mechanisms of deformation, and the comparison of experimental data to the predictions of three increasingly refined Poisson-Boltzmann (P-B)-based theoretical models for the electrostatic double layer component of the interaction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lateral nanomechanics of cartilage aggrecan macromolecules.

To explore the role of the brush-like proteoglycan, aggrecan, in the shear behavior of cartilage tissue, we measured the lateral resistance to deformation of a monolayer of chemically end-attached cartilage aggrecan on a microcontact printed surface in aqueous NaCl solutions via lateral force microscopy. The effects of bath ionic strength (IS, 0.001-1.0 M) and lateral displacement rate (approxi...

متن کامل

Nanoscale shear deformation mechanisms of opposing cartilage aggrecan macromolecules.

The nanoscale shear deformation behavior of two opposing end-grafted aggrecan layers was studied in aqueous solutions using atomic force microscopy, and was observed to depend markedly on bath ionic strength, the presence of calcium ions, and the applied lateral displacement rate. These results provide molecular-level insights into the contribution of aggrecan deformation mechanisms to cartilag...

متن کامل

Nanoscale Conformation and Compressibility of Cartilage Aggrecan Using Microcontact Printing and Atomic Force Microscopy

Introduction. The nanomechanical behavior of cartilage extracellular matrix (ECM) macromolecules has received increasing attention1-4 since ECM degradation leads to tissue and joint dysfunction with age and arthritis.5 For example, loss of the branched proteoglycan, aggrecan, and its highly negatively charged constituent glycosaminoglycan (GAG) polymer chains (Figure 1) significantly reduces ca...

متن کامل

Compressive force promotes sox9, type II collagen and aggrecan and inhibits IL-1beta expression resulting in chondrogenesis in mouse embryonic limb bud mesenchymal cells.

The initial modeling and subsequent development of the skeleton is controlled by complex gene-environment interactions. Biomechanical forces may be one of the major epigenetic factors that determine the form and differentiation of skeletal tissues. In order to test the hypothesis that static compressive forces are transduced into molecular signals during early chondrogenesis, we have developed ...

متن کامل

Nanomechanics of opposing glycosaminoglycan macromolecules.

In this study, the net intermolecular interaction force between a chondroitin sulfate glycosaminoglycan (GAG)-functionalized probe tip and an opposing GAG-functionalized planar substrate was measured as a function of probe tip-substrate separation distance in aqueous electrolyte solutions using the technique of high resolution force spectroscopy. A range of GAG grafting densities as near as pos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomechanics

دوره 39 14  شماره 

صفحات  -

تاریخ انتشار 2006